Average characteristic polynomials of determinantal point processes
نویسندگان
چکیده
منابع مشابه
Average Characteristic Polynomials of Determinantal Point Processes
We investigate the average characteristic polynomial E [∏N i=1(z−xi) ] where the xi’s are real random variables drawn from a Biorthogonal Ensemble, i.e. a determinantal point process associated with a bounded finite-rank projection operator. For a subclass of Biorthogonal Ensembles, which contains Orthogonal Polynomial Ensembles and (mixed-type) Multiple Orthogonal Polynomial Ensembles, we prov...
متن کاملMarkov Determinantal Point Processes
A determinantal point process (DPP) is a random process useful for modeling the combinatorial problem of subset selection. In particular, DPPs encourage a random subset Y to contain a diverse set of items selected from a base set Y . For example, we might use a DPP to display a set of news headlines that are relevant to a user’s interests while covering a variety of topics. Suppose, however, th...
متن کاملStructured Determinantal Point Processes
We present a novel probabilistic model for distributions over sets of structures— for example, sets of sequences, trees, or graphs. The critical characteristic of our model is a preference for diversity: sets containing dissimilar structures are more likely. Our model is a marriage of structured probabilistic models, like Markov random fields and context free grammars, with determinantal point ...
متن کاملLearning Determinantal Point Processes
Determinantal point processes (DPPs), which arise in random matrix theory and quantum physics, are natural models for subset selection problems where diversity is preferred. Among many remarkable properties, DPPs other tractable algorithms for exact inference, including computing marginal probabilities and sampling; however, an important open question has been how to learn a DPP from labeled tr...
متن کاملKronecker Determinantal Point Processes
Determinantal Point Processes (DPPs) are probabilistic models over all subsets a ground set of N items. They have recently gained prominence in several applications that rely on “diverse” subsets. However, their applicability to large problems is still limited due to theO(N) complexity of core tasks such as sampling and learning. We enable efficient sampling and learning for DPPs by introducing...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales de l'Institut Henri Poincaré, Probabilités et Statistiques
سال: 2015
ISSN: 0246-0203
DOI: 10.1214/13-aihp572